

1

Email addresses: ZHAN0388@e.ntu.edu.sg (Xingzi

Zhang), goesele@cs.tu-darmstadt.de (Michael Goesele),

assourin@ntu.edu.sg (Alexei Sourin)

 Preprint submitted to Computers & Graphics

November 8, 2016

Tangible Images of Real Life Scenes

Xingzi Zhanga, Michael Goeseleb, Alexei Sourina

a School of Computer Science and Engineering, Nanyang Technological University, Singapore
b TU Darmstadt, Germany

__

Abstract

Haptic technologies allow for adding a new “touching” modality into virtual scenes. However, 3D reconstruction of real life

scene often results in millions of polygons which cannot be simultaneously visualized and haptically rendered. In this paper, we

propose a way of haptic interaction with the reconstructed real life scenes where multiple original images of the real scenes are

augmented with the reconstructed polygon meshes. We present our solution to the problems of haptic model alignment with the

images and interactive haptic rendering of large polygon meshes with reconstruction artifacts. In particular, the presented

collision detection algorithm is not restricted by any hypothesis and robust enough to support smooth interaction with millions

of polygons. The feasibility and usability of the proposed solution is evaluated in a user study.

Keywords:

haptic interaction; tangible image; large-scale imperfect polygon mesh

1. Introduction 1

Haptic technology, or haptics, is an interaction feedback 2

technology based on applying forces, vibrations, and/or 3

motions to the user. Usually, haptic interaction is 4

considered with 3D objects defined by polygons. However, 5

3D reconstruction of a real life scene using computer vision 6

techniques often results in millions of polygons which 7

cannot be simultaneously visualized and haptically 8

rendered. Mesh simplification methods and acceleration 9

techniques can help, however in many cases the visual 10

display of a photorealistic scene still creates a very 11

significant and time consuming overhead to the whole 12

project implementation pipeline. Replacement of the actual 13

3D scenes with their images is actively used in image-14

driven visualization such as interactive panoramas, street 15

walkthroughs, and online shopping with interactive images. 16

Similarly, replacement of the interactive 3D scenes with 17

their “tangible images” is an alternative solution to this 18

problem. 19

Haptic interaction with images, as if they were actual 20

3D scenes, can be done in a few different ways, which were 21

also previously explored: Firstly, the haptic forces can be 22

derived directly from the image by analyzing pixel intensity 23

[1]. This approach, however, imposes restrictions on the 24

scene illumination. Secondly, haptic components can be 25

added to the images and used for haptic interaction by 26

sketching simplified haptic models on the image so that the 27

models were eventually matched with the respective parts 28

of the displayed scene [2]. Thirdly, in case when there are 29

available reconstructed polygon meshes, they can be also 30

matched with the image and only used for haptic interaction 31

while the original image is displayed thus liberating the 32

computer from 3D visualization task. We proposed our 33

initial solution to this problem in [3] where we mostly 34

worked on the haptic rendering algorithm for large and 35

imperfect polygon meshes. 36

In this paper we continue this research solving a 37

problem of haptic interaction with the reconstructed real 38

life scenes where multiple original images of the real 39

scenes are augmented with the reconstructed polygon 40

meshes. This required us to solve problems of haptic model 41

alignment with multiple images to be displayed as well as 42

smooth interactive haptic rendering of large multi-million 43

polygon meshes, which may have inevitable reconstruction 44

artifacts. 45

In Section ІІ, we survey the relevant works. In Section 46

ІІІ, we discuss the overall project pipeline, describing how 47

to match the reconstructed mesh with the image and how to 48

perform haptic interaction with large-scale imperfect 49

meshes. Results of the proposed algorithm are provided in 50

Section ІV. The design and evaluation of the usability test 51

is presented in Section V to prove the feasibility and 52

usefulness of the presented tangible images approach, 53

followed by the conclusion in Section VІ. 54

2. Related Work 55

2.1. Visual Rendering in a Visual-haptic Interaction 56

Environment 57

In a visual-haptic interactive scene, polygon meshes, as 58

well as the haptic cursor, are usually displayed for visual 59

feedback. Haptic rendering on large meshes is discussed in 60

section 2.3. In this section we talk about the problem in 61

visual rendering, which is that even if the large mesh can be 62

mailto:ZHAN0388@e.ntu.edu.sg
mailto:goesele@cs.tu-darmstadt.de

2

haptically and visually rendered, displaying haptic cursor 63

along with the mesh is problematic. The reason is given in 64

the next paragraph. 65

The haptic cursor position is computed by the CPU 66

(together with other haptic rendering tasks) at the rate of 1 67

kHz. In each graphics frame (30-60 Hz), the cursor position 68

is read from the haptic callback function for visual display 69

of the cursor. Thus samples of cursor position are displayed 70

at graphics update rate. As we know, the graphics rendering 71

time increases with increasing mesh size. This would in 72

turn lead to an increase in sampling interval of cursor 73

position (as in Fig. 1), resulting in clumsiness in the 74

displayed cursor movement. To reduce the graphics 75

rendering time for visual models, we need to either speed 76

up the rendering process or to reduce the size of the models. 77

Fig. 1. Illustration of the effect of increasing graphics rendering time in
one frame. Sampling interval is always equal to the graphics frame

duration. We need to keep the sampling interval small in order to display
the haptic cursor consistently.

Common graphical renderers in visual-haptic 78

interaction, such as OpenGL and Direct3D, utilize 79

rasterization-based rendering due to the real-time 80

requirement. With powerful graphics hardware and the use 81

of acceleration structures for culling, a complex interactive 82

scene can be rendered in real-time. However, the level of 83

realism of the rendered scene heavily depends on the 84

lighting techniques applied to the scene and the manual 85

efforts of designers, which poses an obstacle to realistic 86

immersion. Compared to rasterization-based algorithms, 87

ray tracing provides a more realistic visual effect, but it is 88

costly in computation. With the emergence of high-89

performance rendering engines like Brigade [4], it has 90

become possible to incorporate ray tracing into real-time 91

rendering. However, it is still far from being applied in 92

interactive visual-haptic scenes with millions of polygons. 93

In order to display a more realistic scene, there are 94

works combining ray tracing with rasterization-based 95

rendering in a visual-haptic interaction environment. For 96

example, Morris and Joshi propose to display pre-processed 97

raytraced images to simulate a static-viewpoint scene [5]. 98

Depth information is extracted here along with the image 99

for proper occlusion with other objects rendered in real-100

time. In this way, costly computation is avoided in the 101

rendering loop and visual realism is improved. 102

Based on previous work [5], we know that images can 103

be a promising alternative to displaying the models in some 104

real-time applications. For real life scenes, images provide 105

high-resolution visual feedback without complex 106

computations. 107

2.2. Haptic Interaction with Images 108

Methods for haptic interaction with images can be 109

roughly categorized into two groups. The first group of 110

methods generate force feedback based on image 111

processing techniques. They first build a correspondence 112

between the derived image properties (e.g., grayscale or 113

color values of the pixels) and the model (e.g., depth map 114

or 2.5D geometry model) for force calculation, and then 115

compute the force on-the-fly. These methods allow us to 116

feel the object edges and textures as well as its visible 117

geometry in certain cases. The whole image scene is, 118

however, perceived tangibly only as an embossment of the 119

relief. Besides, since none of the properties can always 120

represent the actual scene geometry of any image, these 121

techniques can only be applied to a specific group of images 122

(e.g., frontally illuminated images). 123

The second group of methods augments images with 124

haptic models matching the image content. In this way, the 125

users are allowed to perceive the full 3D geometry of the 126

objects in the images, including the invisible surfaces. The 127

augmented models can be geometry models, depth maps, or 128

even mathematical functions and procedures [6-7]. 129

High requirement for haptic refresh rate, however, 130

imposes a constraint on the computation time. If we want 131

to use polygon model in the interaction, we need to make a 132

tradeoff between the complexity of the polygon model and 133

the continuity of the force feedback. Some methods use 134

simplified meshes to meet the real-time requirement and 135

provide additional information to simulate haptic details on 136

the surface. For example, M. A. Otaduy et al. [6] extract 3D 137

texture-induced force from texture images and apply it 138

along with low-resolution geometry-induced force. Kim et 139

al. [8] propose to define geometric information as a depth 140

map while stiffness and viscosity maps are applied at the 141

same time to represent physical properties of the scene. To 142

avoid the constraint, there are also methods that resort to 143

other geometry representation. In our previous paper [2], 144

we define the basic geometry of the models using FRep 145

models (variants of implicit functions) and add texture 146

force to simulate details. All these methods allow the users 147

to perceive the haptic details to some extent, but none of 148

them manage to tangibly present the high-fidelity geometry 149

of the objects in real life images. 150

Multi-view reconstruction methods such as MVE [9] 151

are able to produce polygon meshes of a complex scene 152

which are sufficient for visualization. If we use the 153

reconstructed model to provide haptic feedback for the 154

images served as input in the reconstruction pipeline, the 155

haptic display could be easily registered with the images. In 156

this way, a high-resolution haptic feedback can be achieved 157

we are able to deliver a realistic haptic immersion into 158

images as if they were 3D scenes. Therefore, if we could 159

find a way to handle collision detection with reconstructed 160

meshes, a reconstructed model is an ideal choice for the 161

haptic interaction with images. 162

2.3. Point-based Haptic Rendering with Polygon Meshes 163

The challenge of collision detection with large-scale 164

meshes lies in locating the polygon that the haptic cursor 165

(Haptic Interface Point, HIP) is in contact with in real-time. 166

We call it the active polygon in this paper. In a virtual scene, 167

a proxy is calculated to indicate the position of HIP. When 168

the HIP moves in the free space, the proxy position matches 169

Graphics frame duration

Haptics frame duration

Sampling interval

New Graphics frame duration

Haptics frame duration

New Sampling interval

Read proxy position

3

with the position of the HIP. When the HIP collides with 170

the mesh, i.e. inside the mesh, if it is a simulation of rigid-171

to-rigid collision, the proxy lies on the surface of the active 172

polygon. 173

Many existing methods for haptic rendering of polygon 174

meshes detect collision with the whole polygon mesh in 175

each haptic frame. The haptic rendering time thus depends 176

on the number of polygons. For example, in widely-used 177

haptic rendering methods such as God-Object [10], Ruspini 178

[11] and CHAI3D [12], active constraint polygons need to 179

be found first from all the polygons in each haptic frame, 180

and then the constraint polygon with the shortest distance 181

to the haptic cursor is determined as the active polygon. 182

OpenHaptics HLAPI [13] utilizes the OpenGL Depth 183

Buffer and Feedback Buffer to access shapes rendered in 184

graphics rendering loop and automatically detect collison 185

based on the geometry and depth information stored inside 186

these two buffers. In this way, HLAPI’s performance is not 187

influenced by the size of polygons. However, the Feedback 188

Buffer has a limited size (storing up to 65536 vertices) and 189

using the Depth Buffer results in discontinuities in the 190

computed haptic force due to the fact that 3D geometry is 191

saved as an image in the Depth Buffer. 192

There are a number of methods that have been proposed 193

to reduce the computational time using spatial partitioning 194

and hierarchical structures, such as H-COLLIDE [14] and 195

ActivePolygon [15]. In the ActivePolygon algorithm, 196

polygons are stored in an octree data structure. Only the 197

polygons stored in the cells that the haptic cursor passes by 198

between frames are used for collision detection. These 199

methods could effectively reduce the haptic rendering time, 200

however, they cannot handle the situation when the mesh is 201

too dense, because the computation complexity of these 202

algorithms depends on the number of polygons in the cells 203

that the haptic cursor passes from frame-to-frame. Thus, if 204

the haptic cursor moves very fast and passes several cells 205

within one cycle, only the first cell (obtained from the 206

cursor position in last frame) and the last cell (obtained 207

from the cursor position in current frame) are known while 208

the in-between cell information is lost. To avoid missing the 209

active polygon, all the cells that the cursor might pass need 210

to be considered and this would lead to a significant 211

expansion in the search range, even if the cell size is 212

optimized. For example, the maximum velocity of the 213

Geomagic Touch desktop haptic device is 2.5 mm/ms, so 214

all the polygons in those cells within the distance of 2.5 mm 215

to the previous position of haptic cursor need to be checked. 216

If the mesh is dense and has a few hundred polygons within 217

a 2.5 mm cubic space, fast and accurate collision detection 218

cannot be maintained. 219

Geometry connectivity information was first used by 220

Chih-Hao Ho et al. in their “neighborhood watch” 221

algorithm [16] to predict the next active primitive (an 222

extension of active polygon) based on the previous active 223

primitive. It refers to the vertex, line segment or polygon 224

that the haptic cursor is in contact with. Before haptic 225

rendering, the connectivities among vertices, lines and 226

polygons of the mesh are predefined and stored. After the 227

first collision is detected, only the neighbors of the previous 228

active primitive are checked. Using an iterative approach 229

one can track the trace of the haptic cursor and find the 230

closest primitive at the current position. In this way, the 231

haptic rendering time is independent of the number of 232

polygons except for every first collision with the mesh. 233

Inspired by the “neighborhood watch” algorithm [16], 234

we propose a hybrid collision detection method which 235

combines the pre-computed connectivity information and 236

spatial partitioning. Instead of directly searching for the 237

active primitive, we first track the polygon intersected with 238

HIP trace and then use it as start point to track the active 239

primitive. In this way, the computational time is fully 240

independent of the polygon number. One of the main 241

differences between our proposed method and Chih-Hao 242

Ho’s method is that we are not dealing with perfect CAD 243

polygon meshes. The geometry information obtained from 244

the meshes can be incomplete, may contain redundant 245

vertices and facets, or may even be wrong. Thus more 246

general criteria for searching for the active primitive is 247

needed. 248

3. Making Tangible Images 249

Augmenting images with haptic models requires for 250

answering two questions: where to obtain the 251

corresponding models and how to match them with the 252

respective parts of the images. 253

Fig. 2. In the MVE pipeline, Structure-from-Motion (SfM) techniques

are used to reconstruct camera parameters and a sparse points set. Then

a mesh is reconstructed using Multi-View Stereo (MVS) and Floating
Scale Surface Reconstruction (FSSR) approach. In tangible image

pipeline, the reconstructed model is matched with corresponding images

to provide haptic feedback. Rotation of the scene can be simulated by a
series of selected images.

There are several ways to obtain models of a real scene, 254

such as interactive modeling of the scene in computer-aided 255

design systems, reproducing the model based on the data 256

4

collected from 3D scanners and reconstructing the model 257

based on multi-view reconstruction methods. Matching a 258

model with an image requires for taking into account its 259

perspective distortions: we may either define the model in 260

a perspectivally distorted modeling space matching the 261

image coordinate space as in [2], or use camera projection 262

transformation for mapping coordinates between the image 263

and the model coordinate spaces. 264

In this paper, we use reconstructed models to make the 265

corresponding image dataset tangible. Models generated 266

from MVE [9] are used as examples. Given multiple images 267

of a real scene, MVE reconstructs a polygon mesh of the 268

scene, along with the estimated camera parameters for each 269

input image (as shown in the MVE pipeline in Fig. 2). If the 270

input image dataset contains close-up photos, the output can 271

be a high-resolution 3D scene with millions of polygons 272

and some regions are of a higher resolution than other parts. 273

In the pipeline of tangible image (as illustrated in Fig. 274

2), we simulate virtual walkthroughs in the real scene with 275

a series of selected images from the dataset. Then the 276

reconstructed model is registered with each image using the 277

estimated camera parameters and the respective coordinate 278

transformation. To incorporate reconstructed meshes in 279

haptic interaction, the worst case scenario is considered in 280

this paper, i.e. we show an approach to haptically rendering 281

large-scale imperfect meshes. This approach is pluggable 282

and can be used for haptic rendering with any large-scale 283

meshes. It performs the following tasks: 284

 Coordinate transformation. We register the 285

haptic display with the photo using the 286

reconstructed camera parameters. 287

 Preprocessing. We deal with the imperfections of 288

the reconstructed mesh and build acceleration 289

structures for collision detection. 290

 Haptic rendering. We propose a hybrid collision 291

detection algorithm to handle collision detection 292

with large-scale meshes and explain how to render 293

force feedback based on the collision results. 294

3.1. Coordinate transformation 295

When using images to replace visual rendering of the 296

meshes, we need to match the haptic models with the 297

images so that the image content matches the haptic display. 298

In a multi-view reconstruction process, camera parameters 299

of the images can be estimated based on structure-from-300

motion techniques [17]. Therefore, given a target image and 301

corresponding reconstructed model, the estimated camera 302

parameters could be used to calculate the modelview and 303

projection matrices for projecting the model in the camera 304

frustum. Suppose RC is the orientation matrix of the virtual 305

camera with respect to the world coordinate system, TC is 306

the column vector which defines the location of the virtual 307

camera in the world coordinate system, f is the focal length 308

of the camera, img_width and img_height are the width and 309

the height of the given image, ppx and ppy are x, y 310

coordinates of the principal point offset of the camera in 311

pixel coordinate system, znear and zfar are the z coordinates 312

of the near and far clipping planes, then the 4*4 modelview 313

and projection matrices Mmol and Mproj can be obtained as 314

follows: 315

 𝑀𝑚𝑜𝑙 = (
𝑅𝐶 𝑇𝐶
0 1

) (2) 316

𝑀𝑝𝑟𝑜𝑗 =

(

2𝑓𝛼𝑥 0 2(𝑝𝑝𝑥 − 0.5) 0

0 2𝑓𝛼𝑦 2(𝑝𝑝𝑦 − 0.5) 0

0 0
𝑧𝑓𝑎𝑟+𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

−2 𝑧𝑓𝑎𝑟 𝑧𝑛𝑒𝑎𝑟

𝑧𝑓𝑎𝑟−𝑧𝑛𝑒𝑎𝑟

0 0 1 0)

 (3) 317

 𝑎𝑠𝑝𝑒𝑐𝑡 = 𝑖𝑚𝑔_𝑤𝑖𝑑𝑡ℎ/𝑖𝑚𝑔_ℎ𝑒𝑖𝑔ℎ𝑡 (4) 318

 𝛼𝑥 = {
 1, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1

1 𝑎𝑠𝑝𝑒𝑐𝑡⁄ , 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1
 (5) 319

 𝛼𝑦 = {
𝑎𝑠𝑝𝑒𝑐𝑡, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 > 1
1, 𝑖𝑓 𝑎𝑠𝑝𝑒𝑐𝑡 ≤ 1

 (6) 320

Note that the origin of the image coordinate system for 321

the MVE-produced models is at the top-left corner of the 322

image while it is at the bottom-left corner of the image in 323

OpenGL. Therefore when displaying MVE models in 324

OpenGL, the y-axis needs to be inverted to match the 325

image. This could be done by inverting all elements in the 326

second row of either Mmol or Mproj. 327

Fig. 3. Flowchart of the mapping process.

There are three workspaces involved in the visual-328

haptic interaction: the camera workspace (defined during 329

the structure-from-motion process), the haptic workspace, 330

and the world coordinate system. The whole mapping and 331

transformation process behind the interaction scene is 332

illustrated in the flowchart in Fig. 3. The procedures 333

enclosed by the blue dashed lines are for visual rendering. 334

In real 3D scenes, the haptic cursor would be hidden when 335

moving to the back of the objects. To simulate such 336

occlusion effect with displaying only 2D images, we write 337

the reconstructed models to the depth buffer and then 338

disable writing to the depth buffer right after the writing 339

operation. The depth buffer writing is kept disabled in the 340

Map haptic cursor from haptic workspace to world

coordinate system

ℎ𝑑𝑢𝑀𝑎𝑝𝑊𝑜𝑟𝑘𝑠𝑝𝑎𝑐𝑒𝑀𝑜𝑑𝑒𝑙(𝑀𝑚𝑜𝑙, 𝑀𝑝𝑟𝑜𝑗, 𝑀𝐻𝑡𝑜𝑊)

𝑝𝑤 = 𝑀𝐻𝑡𝑜𝑊 ∗ 𝑝ℎ

Collision detection

Between 𝑝𝑤
and 𝑝𝑤

′

Transform haptic proxy

from world coordinate

system to camera space

𝑃𝑟𝑜𝑥𝑦𝑐 = 𝑀𝑝𝑟𝑜𝑗 ∗ 𝑀𝑚𝑜𝑙 ∗

𝑃𝑟𝑜𝑥𝑦𝑤

Compute the contact

point 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑤

𝑃𝑟𝑜𝑥𝑦𝑤 = 𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑤

Transform the

reconstructed model to

camera space

𝑝𝑐
′ = 𝑀𝑝𝑟𝑜𝑗 *

𝑀𝑚𝑜𝑙*
𝑝𝑤
′

Write 𝑝𝑐′ into depth

buffer and disable

depth buffer writing

Display 𝑃𝑟𝑜𝑥𝑦𝑐 with

the corresponding

image rendered as

texture and enable

depth test for

occlusion effect

No

Yes

Map the proxy back to

haptic workspace for force

calculation

𝑃𝑟𝑜𝑥𝑦ℎ = 𝑀𝐻𝑡𝑜𝑊
−1 ∗ 𝑃𝑟𝑜𝑥𝑦𝑤

𝑃𝑟𝑜𝑥𝑦𝑤 = 𝑝𝑤

5

following rendering loop. Afterwards, with depth test 341

enabled and glDepthFunc depth comparison function set to 342

GL_LEQUAL, the depth values of the models rendered in 343

real-time (e.g., haptic cursor) are compared with the depth 344

values stored in the depth buffer. A pixel of the haptic 345

cursor is only drawn if the incoming depth value at this 346

pixel is less than or equal to the stored depth value. In such 347

a way, if the haptic cursor goes to the back of the 348

reconstructed model (i.e. the incoming depth value is 349

greater than the stored depth value), it is not drawn and the 350

occlusion effect is thus achieved. 351

In the haptic servo loop thread, the position of the haptic 352

cursor is mapped to the world coordinate system for 353

collision detection and then mapped back to the haptic 354

workspace for force rendering if the collision happens. The 355

generated proxy position is transformed to the camera 356

workspace and sent to the client thread for displaying. 357

3.2. Preprocessing of the reconstructed mesh 358

In order to apply the collision detection algorithm, we 359

need to preprocess the reconstructed mesh, which includes 360

three steps. 361

The first step is to handle imperfections with regard to 362

duplicate vertices inside the mesh. Reconstructed models 363

are likely to have duplicate vertices, e.g., the city wall 364

model in Fig. 9(a) has 1883 groups of duplicate vertices. 365

These vertices cause the appearance of holes during haptic 366

rendering leading to pop-throughs during the haptic 367

interaction. We therefore delete the duplicate vertices and 368

zero-area polygons in the mesh in the following way. All 369

the vertices are traversed to form a list of duplicate vertex 370

groups, and in each group the vertex with the smallest index 371

is considered as effective while the others are deemed 372

duplicates. Then, the polygons with duplicate vertices are 373

divided into two groups. Those with two or more duplicate 374

vertices from the same group (i.e. zero-area facets) are 375

deleted directly, while the others have their duplicate 376

vertices replaced by the effective vertices of the same 377

group. 378

After removing all the duplicate vertices and zero-area 379

polygons, the second step is to build the connectivities 380

among vertices, line segments and polygons and store all 381

the neighbors for each primitive. With reference to the 382

“neighborhood watch” algorithm [16], there are three kinds 383

of primitives in a mesh: vertices, line segments and 384

polygons. Thus the concept of active polygon is extended 385

to active primitive, the primitive that the HIP is in contact 386

with. In our paper, we define the neighbors for the three 387

primitive types referring to the definitions in [16]: 388

 For a polygon, the neighbors are its line and vertex 389

components. 390

 For a vertex and a line, their neighbors include all 391

the polygons connected to it and all the lines and 392

vertices that comprise these polygons. 393

Fig. 4 illustrates an example of how neighbors are 394

defined for a vertex, a line segment and a polygon. 395

Based on the connectivities between the vertices and 396

polygons, the vertex normals are recalculated by summing 397

up the weighted normal of the neighboring polygons and 398

normalizing the sum [18] as in (1).399

 𝑛𝑣 =
∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖

‖∑ 𝛼𝑖∗𝑛𝑓,𝑖𝑖 ‖
400

Here, the weight is each neighboring polygon’s inner 401

angle at this vertex. Besides, we also check and store 402

whether a line is on a convex or concave surface. The lines 403

with only one adjacent polygon are marked as edges. These 404

lines may be the edges of the outer contour or the edges of 405

holes on the surface of the mesh. 406

 (a) (b) (c)

Fig. 4 . A vertex neighbor is marked as a small circle, a line segment

neighbor is marked in orange color and a polygon neighbor is marked
with stripes. (a) The red vertex has 7 polygon neighbors, 14 line

segment neighbors and 7 vertex neighbors. (b) The red line segment has

2 polygon neighbors, 4 line segment neighbors and 4 vertex neighbors.
(c) The red polygon has 3 line segment neighbors and 3 vertex

neighbors.

In the final preprocessing step, we apply a uniform 407

partition to the space within the bounding box of the 408

polygon mesh and divide this space into cells. The size of 409

the cell is determined by the highest local density of the 410

mesh. To narrow down the search range for active primitive 411

and to meet the real-time requirement, the maximum 412

number of polygons in one cell needs to be constrained. We 413

identify the largest number of polygons in one cell before 414

proceeding to collision detection and adjust the cell size 415

based on this number. In our method, a polygon is 416

considered as belonging to one cell if a vertex of the 417

polygon is in this cell, the polygon has an edge intersecting 418

with the bounding box of this cell or the bounding box of 419

this cell intersects with the polygon. This criterion is the 420

same as that in [11]. 421

3.3. Collision detection with the preprocessed meshes 422

The challenge of collision detection with large-scale 423

meshes lies in how to obtain the active polygon in real time 424

(1000 Hz). The existence of an active primitive is the 425

necessary and sufficient condition for point-based collision. 426

As illustrated in Fig. 5, in our method the detection 427

procedure in the current frame is divided into two branches 428

based on the collision status in the immediately preceding 429

frame. 430

If there is no collision between the HIP and the mesh in 431

the previous frame (the first branch), we check whether the 432

ray from the HIP in the previous frame to that in current 433

frame intersects with the mesh. The reason behind it is that 434

when the HIP goes inside of the mesh from outside, 435

intersection always happens. Therefore, based on the 436

intersection test result, we further break down this branch 437

into two sub-branches: 438

1. If the ray from the previous HIP to the current HIP 439

intersects with the mesh at one polygon, this 440

polygon is treated like the previous active primitive 441

and served as start point in the tracking for active 442

primitive in the current frame. 443

 444

6

2. Naturally, if there is no intersection then there is no 445

collision in the current frame. 446

Correspondingly, if the HIP collides with the mesh in 447

the previous frame (the second branch), then the active 448

primitive in the previous frame is used as a start point to 449

track the path of the HIP and locate the active primitive in 450

the current frame. If the tracking succeeds, it means that the 451

HIP is still in contact with the mesh in this frame. Otherwise 452

we consider that the contact has stopped. 453

Fig. 5. Flowchart of collision detection process. 𝑃0, 𝑃1 denotes the HIP
in the previous and the current frame. AP means active primitive.

During the whole process, there are two key modules: 454

the intersection test between the ray and the mesh and the 455

tracking of the active primitive (marked blue in Fig. 5). 456

More implementation details about these two modules are 457

presented in the following. 458

3.3.1. Intersection test 459

In our previous paper [3], the collision detection 460

algorithm is built on the assumption that if the HIP crosses 461

mesh surface in a frame then the active polygon in this 462

frame would be in the same cell as the haptic cursor. This 463

assumption enables us to narrow down the detection range, 464

however, it does not always hold. When it fails, the 465

detection would also fail, resulting in unexpected pop-466

throughs. 467

To remove this assumption, in this paper we introduce 468

ray tracing into the first branch of our algorithm, 469

dismantling this part into an intersection test, which will be 470

described in the following, and a tracking process, which is 471

the same as the process run in the second branch but with 472

different initial values. 473

For the intersection test, the first step is to check 474

whether the HIP is inside the bounding box of the mesh in 475

the current frame. If it is inside the bounding box, we 476

proceed to locate the cell that the HIP is in. Suppose 𝑃0 is 477

the HIP in the previous frame and 𝑃1 is the HIP in current 478

frame. If 𝑃1 ∈ 𝑐𝑒𝑙𝑙0, then based on the connectivity relation 479

between cells we can find all the cells {𝑐𝑒𝑙𝑙0, … , 𝑐𝑒𝑙𝑙𝑛} that 480

the ray 𝑃0𝑃1 passes through. To find the intersected 481

polygon from these cells, we start with 𝑐𝑒𝑙𝑙0 . We check 482

whether ray 𝑃0𝑃1 intersects with any of the polygons inside 483

𝑐𝑒𝑙𝑙0 . If this is the case, we check whether there is an 484

intersection with polygons inside 𝑐𝑒𝑙𝑙1. We continue like 485

this until we find the intersected polygon or we reach 𝑐𝑒𝑙𝑙𝑛 . 486

In this way, the computation complexity of the intersection 487

test is only related to the polygon number inside the cells 488

along the HIP path. 489

Fig.6 illustrates how we derive all the target cells one 490

by one. As we can see, 𝑃1 is in cell a and the ray 𝑃0𝑃1 491

intersects with the blue polygon at point Q. This intersected 492

polygon is in cell b, d and e, not in the same cell as the HIP 493

𝑃1. Since cell a does not contain the intersected polygon, 494

we check whether 𝑃0𝑃1 intersects with the boundary of cell 495

a. Since an intersection exists, we locate the intersection 496

point 𝑃1
1 and update 𝑃1 with it. The location of this 497

intersection point also determines the common face and 498

thus the next target cell c. In the same manner, we can 499

identify cell b based on intersection point 𝑃1
2 and eventually 500

obtain all the cells {𝑎, 𝑐, 𝑏, 𝑒, 𝑑} in the listed order. 501

Fig. 6. An example to illustrate how to find all the cells intersected with
ray 𝑃0𝑃1 in the following order: 𝑎 → 𝑐 → 𝑏 → 𝑒 → 𝑑. The triangle
intersected with 𝑃0𝑃1 is marked blue while the active primitive is

marked red. 𝑃1
′ is the projection of 𝑃1 on the active primitive.

We note that the existence of an intersected polygon 502

does not necessarily mean there is collision between the 503

HIP and the mesh in this frame. Let us consider as an 504

example the case in Fig. 7. The ray 𝑃0𝑃1 intersects with the 505

mesh, but neither 𝑃0 nor 𝑃1 is inside the mesh, i.e. no 506

collision happens. Therefore, after we obtain the intersected 507

polygon, we need to use it as start point to track the active 508

primitive. Only if an active primitive exists can we confirm 509

that the collision has happened. 510

Fig. 7. An example to illustrate difference between intersection and
collision.

Is there collision

detected in the previous

frame

𝐴𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒

 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠
𝑓𝑟𝑎𝑚𝑒

No

 Yes

Does ray 𝑃0𝑃1
intersect with the

mesh

Use 𝐴𝑃𝑝𝑟𝑖𝑜𝑟 as start

point for tracking

𝐴𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in current

frame

𝐴𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑝𝑜𝑙𝑦𝑔𝑜𝑛 𝑡ℎ𝑎𝑡
 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠 𝑤𝑖𝑡ℎ

𝑃0𝑃1

No

Does 𝐴𝑃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

exist
No collision in

current frame

Yes

Collision happens

in current frame

No

Yes

7

3.3.2. Tracking of the active primitive 511

Based on the geometry connectivities built in 512

preprocessing step, given a start point, we are able to follow 513

the path of the HIP and track the active primitive. This start 514

point can be a polygon, a line segment or a vertex. We refer 515

to it as a start primitive in the following. The start primitive 516

can be obtained from two sources: the intersected polygon 517

derived from the intersection test or the active primitive in 518

the previous frame. 519

Three conditions need to be fulfilled to make a primitive 520

active in one frame: 521

 HIP criterion: the HIP is inside the mesh. 522

 Distance criterion: this primitive has the shortest 523

distance to the HIP compared to its neighbors. 524

 Projection criterion: the orthogonal projection of 525

the HIP onto this primitive is inside its range. 526

Considering the relations between these three 527

conditions, we examine them in the following order: firstly, 528

we find the primitive which meets the last two conditions, 529

then we check whether the first condition is true for this 530

primitive. 531

Fig. 8. Psedocode of algorithm for obtaining the active primitive.

The whole tracking process is represented as a repeat 532

until loop operation in the pseudocode given in Fig. 8. The 533

loop starts with the determined start primitive. In each 534

iteration, 𝐴𝑃𝑛𝑒𝑤 is selected from the input primitive 535

𝐴𝑃𝑝𝑟𝑖𝑜𝑟 and its neighbors based on the distance and 536

projection criteria for being an active primitive. If 𝐴𝑃𝑛𝑒𝑤 is 537

the same as 𝐴𝑃𝑝𝑟𝑖𝑜𝑟 , it would be considered as a potential 538

active primitive and be checked to find whether it meets the 539

last condition, i.e. the HIP criterion. Otherwise, the loop 540

continues with 𝐴𝑃𝑛𝑒𝑤 as the input primitive for the next 541

iteration. A primitive that meets all three criteria is the 542

active primitive in the current frame and it will be saved and 543

used as the start primitive for the tracking in the next frame. 544

In our algorithm, when examining a primitive and its 545

neighbors based on the distance and projection criteria, we 546

incorporate the features of each primitive type into the 547

checking order. For a polygon, if the projection of the HIP 548

is inside its range, then it definitely has the shortest distance 549

to the HIP compared to its components (three line segments 550

and three vertices). The same rule applies to the line 551

segment: If one line segment has the projection of the HIP 552

on it, it certainly has the shortest distance to the HIP 553

compared to its two vertices. Therefore, we calculate and 554

compare the distances of the potential active primitive and 555

its neighbors to the HIP following this order: polygons first, 556

then line segments, and lastly the vertices (reflected in the 557

blue part of Fig. 8). 558

3.4. Force rendering 559

We assume that the interactive models are hard and stiff 560

objects, therefore we apply constraint-based haptic 561

rendering: we compute a proxy to represent the haptic 562

cursor so that the cursor is always visible. When the HIP is 563

moving in free space, the position of the proxy matches the 564

HIP. When there is a collision, the active primitive is 565

known and the proxy is assigned as the projection of the 566

HIP on the active primitive. 567

We use a spring force model. The magnitude of the 568

force feedback is proportional to the penetration depth of 569

the HIP into the active primitive, which is exactly the 570

distmin that we obtain in the iteration loop of Algorithm 1. 571

Normally, the force is computed in the same direction as 572

the facet normal. In our method, we use this approach if the 573

active primitive is a polygon. When the active primitive is 574

a line segment, the force is applied along the direction 575

opposite to the movement, which is from the proxy to the 576

HIP position. In this way, we can effectively prevent the 577

haptic cursor from crossing the edges. Thus, if the cursor 578

slides to a hole on the mesh, it would not fall into the hole. 579

The disadvantage of this strategy is that if the cursor slides 580

along a ragged edge, there are frequent changes in the force 581

direction, since we always give the cursor a resistant force 582

perpendicular to the edge. If the force direction is in the 583

same direction as the velocity, this may lead to a cursor 584

jump. 585

4. Results 586

The images in Fig. 9 illustrate how the concepts 587

introduced in the previous section are implemented given a 588

reconstructed model. Fig. 9(a) shows the original 589

reconstructed city-wall model included in MVE [9], while 590

the small image in the left upper corner is the image to be 591

used for visual display in the interactive scene. Based on 592

the reconstructed camera parameters of this image, we 593

transform the model to the camera workspace and obtain 594

the part in Fig. 9(b) after clipping. We can see that the 595

clipped model matches with the content of the image (Fig. 596

9(c)). After transformation and mapping, the haptic cursor 597

is able to interact with the city wall in the image as 598

displayed in Fig. 9(d). The red ball in Fig. 9(d) represents 599

the proxy of the haptic cursor. A red line pointing to the 600

normal direction is also shown, indicating that the cursor is 601

in contact with the model now. 602

8

(a)

(b)

(c)

(d)

Fig. 9. (a) the original reconstructed model. (b) the transformed model

displayed in simulated camera frustum. (c) the alignment of the

transformed model and the image. (d) a snapshot of the interactive

scene.

The examples of haptic interaction with the models 603

reconstructed from images (Fig. 10) can be seen in the 604

companion video, which is also available at 605

https://youtu.be/6_tHrG9q3H8. We are able to explore the 606

scene by switching between consecutive images forming a 607

walkthrough and touching the image content with the haptic 608

cursor. With the reconstructed mesh superimposed on the 609

images, the images are tangible like real 3D scenes. When 610

the haptic cursor collides with a tangible object in the 611

image, it always stays on the surface of the object as if it is 612

interacting with real rigid objects. When the cursor goes to 613

the back of the object, it would be hidden. 614

Fig. 10. Examples of interactions with the models reconstructed from
images. The cursor is displayed as a red ball in the interactive scenes.

https://youtu.be/6_tHrG9q3H8

9

 Fig. 11. Top row: photos taken from high viewpoint. Middle row: photos taken from normal eye-level viewpoint. Bottom row: photos taken from low
viewpoint.

5. User Study 615

In our previous paper [3] we conducted the comparison 616

experiment which has shown that the performance of our 617

system far outweighs the commonly-used haptic renderers 618

(God-object renderer [10] provided by H3D API and 619

OpenHaptics HLAPI [13]) in colliding with large-scale 620

meshes. In this paper we report the results of the subjective 621

user tests evaluating what the users think about our 622

approach. 623

5.1. Capturing test photos 624

Mathildenhöhe sculpture photos (Fig. 11) used in this 625

test were captured by orbiting a camera around the sculpture 626

center. The camera was incrementally rotated to record the 627

sculpture from different viewing angles. Besides taking 628

photos from normal eye-level viewpoint, we also captured 629

the sculpture from high and low viewpoints. During 630

capturing the camera was always looking at the central part 631

of the sculpture. 632

Selectively we chose 21 photos from each viewpoint 633

and put them in a 3-row grid to simulate a constrained 634

rotation effect (Fig. 11). All these chosen photos were 635

preloaded to our system before the test. 636

In the reconstruction of the Mathildenhöhe sculpture 637

model, 256 photos were put into the MVE system, including 638

the photos used in our test. The reconstructed model 639

contained around 5 million triangles. 640

5.2. Experimental Setup 641

Our system was run on a computer with CPU working 642

at 2.60GHz. The users were expected to learn the displayed 643

scene by both visual and haptic interaction with it. The 644

visual interaction was supported as a panoramic rotation of 645

the scene controlled by the left and right arrow keys. With 646

each key pressed, the respective next image of the captured 647

scene from the image sequence was displayed. Haptic 648

interaction was implemented using Geomagic Touch 649

desktop haptic device placed close to the user’s dominant 650

hand (Fig. 12). The users sat in front of the device and were 651

asked to touch the objects in the scene by moving the haptic 652

cursor displayed in it. The scene could be rotated in 180 653

degrees counterclockwise to view and touch the objects 654

from different perspective. 655

Fig. 12. A beta test participant interacts with the tangible photos.

5.3. Experimental Design 656

5.3.1. Measurements 657

Table 1

Questions and corresponding factors. These factors are rated on a scale of

1 to 5, where 1 means not at all and 5 means very much.

Question Factor

How realistic is your haptic
interaction with the displayed
scenes?

Realism

How well could you actively
explore the displayed scenes
by touching?

Realism, Sensory

How comfortable do you feel
interacting with the displayed
scenes?

Comfort

How useful is the haptic
feedback in improving your
interaction experience?

Sensory

How satisfied are you with
your interaction experience?

Satisfaction

A questionnaire as in Table 1 was designed to evaluate 658

interaction with tangible images. Based on Presence [19], 659

four Factors are evaluated in this questionnaire: realism, 660

sensory, comfort and satisfaction. 661

10

Among the five questions, the second question 662

contributes to two factors. According to [19], the 663

correlation coefficient of this question is 0.15. Thus we 664

computed the results for realism and sensory in this way: 665

 𝑟𝑒𝑎𝑙𝑖𝑠𝑚 = 0.15 ∗ 𝑄2 + 0.85 ∗ 𝑄1 (7) 666

 𝑠𝑒𝑛𝑠𝑜𝑟𝑦 = 0.15 ∗ 𝑄2 + 0.85 ∗ 𝑄4 (8) 667

5.3.2. Procedures 668

24 users participated in our test, 7 female and 17 male. 669

1 participant was ambidextrous and tried our system with 670

both hands. 17 of them never used any haptic device. The 671

entire test took 20 to 30 minutes to complete. Here are 672

detailed procedures: 673

1. Demonstration of how to use Geomagic Touch with 674

an example. Proper training is necessary before the 675

test to eliminate the tension of the users, especially 676

for novices. 677

2. User testing. The users were asked to explore the 678

displayed image scene with the haptic device. 679

Viewpoints and viewing angle can be changed by 680

pressing arrow keys. 681

3. Filling in the questionnaire. 682

4. Collection of oral feedback. This step is for gaining 683

a more comprehensive understanding of the ratings. 684

Their answers are recorded on the questionnaire 685

during the collection. 686

5.4. Results 687

The results of the questionnaire are shown in Table 2. 688

The goal of this user test is to know what users think of our 689

system, and more specifically, to assess the likelihood that 690

users would accept and want to use our system. We can see 691

from the table that the means for the four factors were all 692

above 3 (neutral), which reflects a positive attitude towards 693

the system. If we calculate the true population means, the 694

results are still positive. Let us consider realism, the factor 695

with the lowest mean, as an example. The 95% confidence 696

interval for its mean 3.46 is 3.05 to 3.87, of which the lower 697

bound is still slightly higher than 3 (neutral). 698

Table 2

Results of the questionnaire. These factors are rated on a scale of 1 to 5,

where 1 means not at all and 5 means very much.

Factor Mean
Standard
deviation

95% Confidence
Interval

Realism 3.46 0.98 0.41

Comfort 3.58 1.14 0.48

Sensory 3.64 0.90 0.38

Satisfaction 3.58 1.02 0.43

5.5. Discussion 699

Comments from users are categorized into four groups. 700

5.5.1. Pleasure 701

Most users found it impressive to feel the depth of the 702

object in the photo, especially when experiencing significant 703

changes in depth, e.g., sliding from a platform away from us 704

to one closer to us (as in Fig. 13). Besides, we got comments 705

that they enjoyed this user test and would like to try our 706

system again. 707

Fig. 13. Example of sliding from far surface to near surface. The haptic
cursor trace is marked with cursor sample points (sampled at 20 Hz),

which are represented as red balls. The red line always points to the force

direction.

5.5.2. Force feedback 708

Most users encountered problems while sliding the 709

cursor on the surface of small structures with large 710

curvature, because they found it hard to constrain the cursor 711

to the surface. Two of them suggested that we should 712

provide a zooming operation so that they could touch small 713

details better. Another user compared this phenomenon to 714

the real life situations and explained it as lack of automatic 715

assistant force from the wrist which we obtain when sliding 716

our figure on a real curve. 717

Six users expected to feel the physical properties of the 718

objects in the interaction, e.g., stiffness, friction, texture and 719

viscosity. Constrained by the device, it is impossible to 720

simulate interaction with rigid bodies, but in the future we 721

could make force feedback more realistic by adding haptic 722

texture and viscosity to the models and applying friction 723

based on the real material properties. 724

Another interesting finding from the users’ feedback is 725

that most of them believe that there is too much roughness 726

at some places which are supposed to be smooth. This may 727

reflect an unconscious relation between visual feedback and 728

haptic feedback. The users have an expectation about what 729

the haptic feedback should be like based on what they see 730

in the photos. If they do not visually perceive the details that 731

they are touching, they are likely to deny these details and 732

interpret them as unexpected roughness. This partially 733

explains why the average rating on realism is just mediocre 734

(3.46 on a scale of 1 to 5). Based on this, we conclude that 735

such a system should not provide haptic details that cannot 736

be perceived by eyes. In addition, the force should be 737

smoothed so that the users do not get frustrated because the 738

HIP is stuck at small surface details. 739

5.5.3. Device 740

Five users pointed out that they felt tired or 741

uncomfortable holding the handle for a prolonged time and 742

three of them explicitly wrote that this has negative 743

influence on their ratings for satisfaction. We could not 744

change the ergonomics of the device but there could be 745

some ways to improve the comfort level, e.g., using some 746

form of cushioning or support for the hand. 747

11

Another complaint about the device is that it is not so 748

intuitive, which results from limited force output and only 749

one interaction point. These are limitations of such ground-750

based haptic interfaces. If we replace the device with body-751

based haptic interfaces such as gloves, suits and exoskeletal 752

devices, the user experience could be improved to some 753

extent, but the cost would also increase largely. 754

5.5.4. Usefulness 755

Most users showed reserved positive attitude towards 756

the usefulness of the haptic feedback in interaction with 757

photos. Only three out of twenty-four users gave negative 758

feedback. 759

Those who gave positive or neutral feedback believed 760

that having one more dimension of feedback is better than 761

simply viewing the photos. They commented that this 762

system could be useful for people with bad depth perception 763

or if the photo content involves unclear structure. One user 764

also mentioned an inspiring observation: her memory about 765

photos is largely enriched in this way and she can remember 766

the content of the photos better after touching them. 767

5.5.5. Others 768

Before the test, we did not inform the users which part 769

of the photos is tangible, so they need to explore it 770

themselves. Three users found that only the sculpture part 771

is tangible and commented that they also wanted to touch 772

other objects in the photo background, e.g., trees, houses 773

and cars. Therefore, one of our goals in the future is to make 774

the whole photo tangible or to think of a way to 775

communicate to the users which parts are tangible. 776

Moreover, we noticed that two users were confused 777

about what touching feels like at the beginning of the test. 778

After our explanation they knew that seeing the haptic 779

cursor does not indicate the occurrence of contact with the 780

objects in the scene. They would feel the haptic feedback 781

only when reaching the depth of the object with the cursor. 782

This confusion is due to the fact that people are not used to 783

derive depth information in the virtual environment without 784

reference. Therefore, additional training about what it 785

means to touch might be necessary and assistive visual 786

feedback could be helpful. 787

6. Conclusion 788

We have presented our approach to creating tangible 789

images using models reconstructed by multi-view vision 790

techniques. To deal with large-size, partially dense 791

reconstructed meshes, we propose an improved hybrid 792

collision detection method. By preprocessing the mesh with 793

uniform partitioning and building connectivities among the 794

vertices, lines and polygons, we are able to handle collision 795

detection with meshes of over ten million triangles. 796

In this approach, we align the haptic models with the 797

images so that the haptic display would match the visual 798

content. Occlusion of the haptic cursor is simulated as if it 799

was interacting with a real 3D scene. 800

With the presented method, we add a new modality into 801

interaction with images. Besides viewing an image, this 802

method enables us to appreciate the image content within a 803

touching distance and complements our viewing experience. 804

Despite the limitations of the device (i.e. not so intuitive, 805

feeling uncomfortable if holding the handle for long time), 806

the results of the usability test show that we have provided 807

an enjoyable and easy way to enrich images with a touch 808

interface and haptic feedback. Based on the users’ 809

comments, there are many things that can be improved (e.g., 810

adding haptic texture and viscosity to the models), but 811

generally this new approach meets the users’ expectation 812

about haptic interaction and it brings new possibilities into 813

interaction with images. 814

ACKNOWLEDGMENT 815

This research is supported by the National Research 816

Foundation, Prime Minister’s Office, Singapore under its 817

International Research Centers in Singapore Funding 818

Initiative, joint PhD Degree Program NTU-TU Darmstadt, 819

and MOE Singapore Funding RG17/15 “Haptic Interaction 820

with Images and Videos”. The authors also thank Mr. 821

Patrick Seemann and Mr. Stepan Konrad for providing the 822

photos and the models used in the user test. 823

REFERENCES 824

[1] Rasool S, Sourin A. Image-driven Haptic Rendering. In: 825

Transactions on Computational Science XXIII, Journal Subline 826

LNCS 8490; 2014. p. 58-77. 827

[2] Zhang XZ, Sourin A. Image-inspired haptic interaction. Computer 828

Animation and Virtual Worlds; 2015, 26: p. 311-319. 829

[3] Zhang XZ, Goesele M, Sourin A. Haptic interaction with a polygon 830

mesh reconstructed from images. In: Cyberworlds(CW) 2016; p. 49-831

56. 832

[4] OTOY. Brigade. 2016. Available: https://home.otoy.com/render 833

/brigade/. 834

[5] Morris D, Joshi N. Hybrid rendering for interactive virtual scenes. 835

In: Stanford University Technical Report CSTR; 2006, 6. 836

[6] Otaduy MA, Jain N, Sud A, Lin MC. Haptic display of interaction 837

between textured models. In: Visualization IEEE; 2004. p. 297-304. 838

[7] Rasool S, Sourin A. Tangible images. In: SIGGRAPH Asia 2011 839

Sketches; p. 41. 840

[8] Kim SC, Kyung KU, Kwon DS. Haptic annotation for an interactive 841

image. In: Proceedings of the 5th International Conference on 842

Ubiquitous Information Management and Communication, ACM; 843

2011. 844

[9] Fuhrmann S, Langguth F, Moehrle N, Waechter M, Goesele M. 845

MVE – An image-based reconstruction environment. Computers & 846

Graphics; 2015, 53: p. 44-53. 847

[10] Zilles CB, Salisbury JK. A constraint-based god-object method for 848

haptic display. In: Proceedings of IEEE/RSJ International 849

Conference on Intelligent Robots and Systems; 1995, p. 146-151. 850

[11] Ruspini DC, Kolarov K, Khatib O. The haptic display of complex 851

graphical environments. In: Proceedings of the 24th annual 852

conference on Computer graphics and interactive techniques; 1997, 853

p. 345-352. 854

[12] CHAI 3D. 2014. Available: http://www.chai3d.org/index.html 855

[13] Geomagic. 2016. OpenHaptic Toolkit Overview. Available: 856

http://www.geomagic.com/en/products/open-haptics/overview 857

[14] Gregory A, Lin MC, Gottschalk S, Taylor R. H-collide: a framework 858

for fast and accurate collision detection for haptic interaction. In: 859

proceedings of Virtual Reality conference 1999; 1999. 860

[15] Anderson T, Brown N. The activepolygon polygonal algorithm for 861

haptic force generation. In: Proceedings of the sixth PHANToM 862

Users Group Workshop, 2001. 863

[16] Ho CH, Basdogan C, Srinivasan MA. Efficient point-based rendering 864

techniques for haptic display of virtual objects. Presence; 1999, 8(5): 865

p. 477-491. 866

[17] Szeliski R. Computer vision: algorithms and applications. Springer 867

Science & Business Media; 2010. 868

[18] Thürrner G, Wüthrich CA. Computing vertex normals from 869

polygonal facets. Journal of Graphics Tools; 1998, 3(1): p.43-46. 870

[19] Witmer BG, Singer MJ. Measuring presence in virtual environments: 871

A presence questionnaire. Presence; 1998, p. 225–240. 872

https://home.otoy.com/render
http://www.chai3d.org/index.html

